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 Abstract 

This study evaluated the soils of Sohag Governorate, Egypt, using both 

traditional laboratory analysis and vis-NIR spectral data from 140 surface soil 

samples. Laboratory results showed wide variability in key soil properties whereas 

calcium carbonate (CaCO₃) ranged from 0.76% to 34.60% with a mean of 5.82%, 

cation exchange capacity (CEC) varied from 1.44 to 32.38 cmol(+)/kg with an 

average of 9.22 cmol(+)/kg, clay content ranged from 1.59% to 54.76% (mean 

16.79%), and electrical conductivity (ECe) spanned from 0.38 to 30.24 dS/m 

(mean 4.82 dS/m). High sample variances were recorded, particularly for clay 

(104.66), reflecting spatial and land use diversity across old and newly reclaimed 

soils. Correlation analysis among these properties revealed a moderate positive 

correlation between CaCO₃ and CEC (r = 0.52), and weaker negative correlations 

between CaCO₃ and both clay (r = –0.25) and EC (r = –0.30), while clay showed 

a positive association with EC (r = 0.34). Spectral data collected in the 350–2500 

nm range revealed distinctive spectral behaviors for each property. Soils with high 

CaCO₃ content exhibited increased reflectance, especially in the 2200–2350 nm 

region, where negative correlations reached r < –0.60. CEC showed a positive 

correlation with reflectance, notably around 2100–2250 nm (up to r = +0.60), due 

to associations with OH-bearing clay minerals. Clay content had the strongest 

spectral signal, with positive correlations exceeding +0.70 in the 2100–2300 nm 

range, while EC was moderately and positively correlated (r ≈ +0.40 to +0.50) 

with reflectance near 1450 nm, 1950 nm, and 2200 nm. These results confirm that 

the shortwave infrared region (SWIR) is particularly sensitive to variations in soil 

composition. The integration of vis-NIR spectroscopy with traditional methods 

demonstrated the feasibility of rapid, non-destructive soil characterization. The 

spectral approach, while dependent on calibration with laboratory data, offers 

significant time and cost savings for large-scale assessments. This study 

emphasizes the complementary value of combining conventional and spectral 

techniques for efficient monitoring and management of heterogeneous soils, 

particularly in arid and semi-arid landscapes like Sohag. The identification of key 

spectral bands for each property paves the way for predictive modeling and digital 

soil mapping, contributing to precision agriculture and sustainable land use 

planning. 

Key words: Sohag soils, vis-NIR spectroscopy, soil property variability, spectral 

correlation analysis, remote sensing in agriculture 

Genetic parameters. 
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INTRODUCTION 

The characterization of soil properties is 

a critical component of sustainable land 

management and precision agriculture, as it 

directly influences crop productivity, resource 

utilization, and environmental stewardship 

(Moursy et al., 2020; Nungula et al., 2024). 

Traditional approaches to soil characterization 

have relied heavily on field surveying, 

systematic sampling, and laboratory analysis to 

assess key soil parameters such as electrical 

conductivity (EC), cation exchange capacity 

(CEC), clay content, and calcium carbonate 

(CaCO₃) as described in several studies such as 

El-Sayed et al. (2023) and Shokr et al. (2024). 

Field surveying provides the spatial context and 

ensures representative sampling, while 

laboratory analyses using wet-chemistry 

methods yield accurate measurements of soil 

attributes (Mustafa & Moursy 2020a; Moursy et 

al., 2022). However, these conventional methods 

are often labor-intensive, time-consuming, and 

costly, especially when large areas or high 

sample densities are required for detailed soil 

mapping and monitoring (Mustafa & Moursy 

2020b; Abd-Elazem et al., 2024). The logistical 

challenges associated with collecting, 

processing, and analyzing numerous soil 

samples can significantly hinder the timely 

acquisition of essential soil information needed 

for effective decision-making in agricultural and 

environmental management (AbdelRahman et 

al., 2025; Moursy, 2025). In recent years, the 

integration of soil spectral data with traditional 

field surveying and sampling has emerged as a 

promising solution to overcome the limitations 

of conventional soil analysis (Shokr et al., 2024; 

Mondal et al., 2025). Soil spectral data, 

particularly those obtained from visible and 

near-infrared (Vis-NIR) hyperspectral 

reflectance spectroscopy; offer a rapid, non-

destructive, and cost-effective means of 

assessing multiple soil properties simultaneously 

(Mustafa & Moursy 2020b; Wang et al., 2024). 

By capturing the unique spectral signatures 

associated with different soil constituents, 

hyperspectral data enable the estimation of EC, 

CEC, clay content, and CaCO₃ with a high 

degree of accuracy when calibrated against 

reference laboratory measurements (El-Sayed et 

al., 2023). The process typically involves 

collecting soil samples through systematic field 

surveys, analyzing a subset of these samples in 

the laboratory to establish ground-truth values, 

and then using spectral reflectance 

measurements to develop predictive models. 

These models, often enhanced by machine 

learning algorithms, can then be applied to 

spectral data from additional samples or even in 

situ field measurements, facilitating the rapid 

characterization of soil properties across larger 

spatial extents (AbdelRahman et al., 2025; Abd-

Elazem et al., 2024; Moursy et al., 2025). The 

synergy between field surveying, sampling, and 

spectral analysis is particularly valuable for 

mapping the spatial variability of soil properties, 

which is essential for precision agriculture and 

land resource management (Mustafa & Moursy 

2022; Mondal et al., 2024). Field surveys ensure 

that sampling captures the inherent 

heterogeneity of the landscape, while laboratory 

analyses provide the reference data needed to 

calibrate and validate spectral models (Shokr et 

al., 2024; Mondal et al., 2025). Once robust 

relationships between spectral features and soil 

properties are established, spectral data can be 

used to generate high-resolution maps of EC, 

CEC, clay, and CaCO₃, supporting site-specific 

management practices and more efficient 

allocation of agricultural inputs. This integrated 

approach not only reduces the time and cost 

associated with traditional soil analysis but also 

minimizes environmental impacts by decreasing 

the reliance on chemical reagents and extensive 

laboratory work (Moursy, 2025). Moreover, the 

use of soil spectral data in conjunction with field 

surveying and sampling enhances the scalability 

and repeatability of soil characterization efforts 

(Mondal et al., 2025). Hyperspectral sensors, 

whether deployed in the laboratory, field, or 

mounted on airborne or satellite platforms, can 

rapidly acquire large volumes of data, enabling 

frequent monitoring of soil conditions over time 

(Shokr et al., 2024; Thabit & Moursy 2024). 

This capability is crucial for detecting changes 

in soil properties due to land use, management 

interventions, or environmental factors (Wang et 

al., 2024). The integration of spectral data with 

geospatial technologies further facilitates the 
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analysis and visualization of soil variability, 

supporting informed decision-making at multiple 

scales. Therefore, the objectives of this study are 

(i) to characterize some Sohag soils using 

traditional methods; (ii) to characterize the soils 

using the vis-NIR spectral signatures; and (iii) to 

compare the two techniques and recommend the 

optimal one.  

 

MATERIALS AND METHODS 

The figure (1) showed the employed 

materials and methods in this study. Soil 

surveying, sampling, preparation and testing 

were conducted as well as the soil spectral 

signatures were acquired. Mathematical and 

statistical calculations were done using R studio 

software to address the relation between the soil 

properties and the spectral data. 

 

Figure (1). Employed materials and methods in the study. 

 

Study area 

The study area (figure 2) is situated in 

Sohag Governorate, Egypt, covering a stretch of 

the Nile Valley from the northern edge of Qena 

Governorate to the southern edge of Assiut 

Governorate, between longitudes 31°20′ and 

32°14′ E. This region spans 11,022 km², with the 

Nile River running for 125 km and the valley 

width ranging from 16 to 20 km, plus a desert 

hinterland extending about 90 km eastward. 

Only about 15% of the governorate’s area is 

inhabited, which is equivalent to 2.07% of 

Egypt's total area (Mustafa, 2023). Land use and 

land cover in the area are diverse: cultivated 

lands dominate at 60.7% of the total geographic 

area, followed by desert lands (23.6%), urban 

areas (12.3%), and water bodies (3.4%) as 

studied by Mustafa (2023). The cultivated lands 

include both old Nile Valley fields and lands 

under reclamation, while urban and rural 

settlements, services, commercial, and industrial 

areas make up a significant portion of the land. 

Sohag province is administratively divided into 

12 central units, 10 cities, 51 local units, 270 

mother villages, and 1,217 small villages 

(Mustafa & Negim, 2016). The population is 

projected to reach nearly 5.9 million in 2025, 

with 78% living in rural areas (CAPMAS, 

2025). Geologically, the area is shaped by the 

Nile’s alluvial deposits, which create fertile soils 

along its banks, consisting of silt, clay, and sand 

transported from the Ethiopian Highlands. To 

the east, the landscape transitions into the arid 

Eastern Desert, marked by ancient sandstone 

formations, while the Western Desert features 

sand dunes, limestone plateaus, and sedimentary 

rock outcrops. Fossil evidence in limestone and 

clay hints at ancient marine environments. The 

Soil sampling n = 140 

Soil chemical analysis 

EC, clay, CaCO3, and CEC 

Soil spectral analysis 

Vis-NIR (350 – 2500nm) 

Soil characterization using 

conventional and spectral techniques 

Correlation analysis between soil 

properties and spectral data 

Comparison and recommendations  
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terrain varies from 100 to 300 meters above sea 

level and is underlain by several groundwater 

aquifers, the most productive of which are 

composed of sand, gravel, and clay lenses, with 

groundwater generally flowing eastward towards 

the Nile (Embaby et al., 2023). Hydrologically, 

groundwater is the second most important water 

source in Sohag after the Nile, serving 

agricultural, domestic, and industrial needs 

(Ahmed & Ali, 2011). The governorate manages 

a network of government and local wells, with 

six main production wells serving 8,100 acres 

and 1,279 local wells benefiting 7,376 acres. 

Irrigation practices vary, with surface irrigation 

being most common, especially in newly 

reclaimed lands, while drip irrigation is limited 

to a few centers and covers a smaller area 

(Negim & Moursy 2023). The climate is arid, 

characterized by hot summers and mild winters, 

with average temperatures ranging from 13.9°C 

in January to 32.8°C in July. Relative humidity 

fluctuates between 33% and 61% depending on 

the season, and rainfall is scarce and irregular 

(El-Zohry et al., 2024). Agriculturally, Sohag 

Governorate has about 322,000 feddans of 

cultivated land and is known for traditional 

crops like wheat, onions, beans, and cotton, as 

well as being a major producer of sugarcane 

(General Authority for Inquiries, 2023). Most 

soils are used for field crops, with limited 

cultivation of vegetables and fruit trees due to 

the heavy, old soils that are less suitable for such 

crops (Ouda et al., 2016). Recent years have 

seen the reclamation and cultivation of new 

lands, particularly in the western part of Sohag, 

such as West Tahta and West Geheina. These 

efforts have expanded the agricultural base and 

introduced new soil management challenges and 

opportunities. The soils of Sohag are diverse, 

ranging from sand and loamy sand to clay and 

clay loam in cultivated areas, and from fine sand 

and siltstone to gravel in newly reclaimed desert 

lands (Ahmed, 2007). Studies have shown that 

soils in the region can be slightly to strongly 

alkaline, with variable salinity and low organic 

matter. For example, El-Sayed et al. (2020) and 

Moursy et al. (2020) found that soils in parts of 

Sohag have low CEC, low SOM, and CaCO₃ 
content ranging from low to very high. Soil 

fertility is often limited by low available 

micronutrients and nitrogen, though potassium 

levels can vary widely. The texture of soils in 

old cultivated lands is usually clay, sandy loam, 

or loam, while newly reclaimed areas may have 

sandy clay, clay loam, or sandy soils, often 

improved by the addition of alluvium. These 

variations reflect both the natural diversity of the 

landscape and the impact of human intervention 

in land reclamation and soil management 

(Mustafa, 2023). 

 
Figure (2). Location map of the study area.  
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Soil sampling and testing 

A total of 140 surface soil samples (0–

25 cm) were collected from various locations 

across Sohag Governorate to represent both old 

and newly reclaimed soils. The coordinates of 

each sampling site were precisely recorded using 

a Garmin eTrex 10 Worldwide Handheld GPS 

Navigator, ensuring accurate spatial referencing 

for subsequent analysis. After field collection, 

the soil samples were transported to the 

laboratory for preparation and chemical analysis. 

Samples were air-dried for two days, then 

crushed and sieved through a 2 mm mesh. The 

fraction of smaller than 2 mm was used for 

laboratory determinations of soil properties. 

Electrical conductivity (ECe) of the soil paste 

extract was measured with an Orion model 150 

EC meter (USA). Total calcium carbonate 

(CaCO₃) content was determined volumetrically 

using Colins’s calcimeter, following the method 

of Jackson (1973). Cation exchange capacity 

(CEC) was measured by saturating the soil with 

1M sodium acetate solution (pH 8.2) and 

replacing with 1M ammonium acetate solution 

(pH 7.0). Available nitrogen, which serves as a 

representative metric for CEC, was determined 

using the micro-Kjeldahl method as described by 

Baruah and Barthakur (1997). Soil texture was 

analyzed using the hydrometer method. To 

prepare for texture analysis, soluble salts and 

soil organic matter (SOM) were removed by 

treating samples with hydrogen peroxide and 

leaching with distilled water, and D-sodium 

hexametaphosphate was used as a dispersing 

agent (Day, 1965). Soil temperature corrections 

were applied to ensure accurate readings (Elfaki 

et al., 2016). 

Spectral data acquisition  

In parallel, hyperspectral reflectance 

measurements were performed on the prepared 

soil samples in the hyperspectral remote sensing 

laboratory (National Authority for Remote 

Sensing and Space Sciences (NARSS), Egypt. 

However, each of the 140 soil samples was 

analyzed in laboratory conditions using a 

spectroradiometer in the visible to near-infrared 

(vis-NIR) spectral range from 350 nm to 2500 

nm, with data collected at 1 nm intervals (figure 

3). Each sample was placed in a circular glass 

petri dish, as illustrated in the referenced 

methodology. The ASD FieldSpec 

spectroradiometer (Boulder, CO) was employed 

to measure the reflectance of each soil sample. 

The sensor was positioned at nadir, with an optic 

angle of 18°, and the distance from the optic to 

the sample background was set at 65 cm, 

resulting in an instantaneous field of view of 

21.1 cm. This setup followed the procedures 

described by Streck et al. (2003) and Liu et al. 

(2020). 

 
Figure (3). Soil spectral signatures in the spectral range 350-2500nm. 
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Mathematical and statistical analyses  

The descriptive statistical analysis of the 

obtained data of the soil wet-chemistry analysis 

was done using the MS-Excel tools whereas the 

values of mean, minimum, maximum, standard 

error, standard deviation, sample variance, and 

range was estimated for each soil property. 

Correlation between the soil properties was done 

using R software (R Core Team, 2024) to 

overview the relation among different properties. 

To investigate the relationships between soil 

properties and their spectral signatures, the EC, 

CEC, clay, and CaCO₃ values were statistically 

correlated with the corresponding spectral data 

using R software.  

Correlation analysis between soil properties 

and spectral data 

To investigate the relationships between 

measured soil properties and spectral reflectance 

data, a correlation analysis was performed using 

the R statistical environment (R Core Team, 

2024). The input dataset was organized as a 

comma-separated values (CSV) file, with the 

first column containing the target soil property 

(e.g., calcium carbonate content, CEC, clay, or 

EC) and the subsequent columns containing 

spectral reflectance values at different 

wavelengths for each soil sample. The analysis 

proceeded as first, the CSV file was imported 

into R, and the soil property values were 

extracted from the first column. Spectral data 

columns were then converted to numeric values 

to ensure compatibility and to address any 

potential formatting inconsistencies. For each 

spectral band (i.e., each wavelength column), the 

Pearson correlation coefficient was calculated 

between the soil property values and the 

corresponding spectral reflectance values across 

all samples, using the cor() function with the 

complete.obs option to handle any missing data. 

The resulting correlation coefficients were 

paired with their respective wavelengths, and the 

output was saved as a new CSV file for further 

interpretation. To visualize the correlation 

patterns across the spectral range, a correlogram 

was generated using the ggplot2 package in R. 

This plot displays the correlation coefficient as a 

function of wavelength, highlighting spectral 

regions most sensitive to the soil property of 

interest. The correlogram was exported as a 

high-resolution JPEG image for inclusion in the 

results. This approach enabled efficient 

identification of key spectral bands associated 

with specific soil properties, providing a robust 

foundation for subsequent predictive modeling 

and interpretation. 

RESULT AND DISCUSSION 

Soil characterization 

Table (1) showed the descriptive 

statistical analysis of the investigated soil 

properties. The soil CaCO3 content ranged from 

0.76 to 34.60% with an average of 5.82%; and 

these soils varied between non-calcareous to 

calcareous according to (FAO, 2016). Moreover, 

the CEC of the investigated soils ranged from 

1.44 to 32.38 cmol(+)/kg; and the average value 

was 9.22 cmol(+)/kg. Regarding the minimum, 

maximum, and average values of the clay 

parameter were 1.59, 54.76, and 16.79%, 

respectively. Furthermore, the ECe differed from 

0.38 to 30.24 dS/m with an average of 4.82 dS/m 

in the studied soil samples; whereas the soils 

ranged from non-saline to strongly saline 

(USSL, 1954). From the obtained data, it is 

obvious that the highest standard error value was 

recorded for the clay parameter (0.86%), 

followed by the CEC (0.62 cmol(+)/kg); CaCO3 

(0.55%); and ECe (0.44 dS/m). The table also 

shows that the standard deviation value for each 

property was 6.48 for CaCO3, 7.34 for soil CEC, 

10.23 for clay percentage, and 5.22 for ECe. The 

corresponding table also showed that the sample 

variance values were large in some properties 

because the soil samples were collected from old 

and newly cultivated lands. The variance value 

of CaCO3 was 41.98, for CEC was 53.85, of clay 

was 104.66, which is the highest; and was 27.22 

for the soil ECe. This wide variance is attributed 

to the wide spatial variability between the soil 

samples which were collected from more than 

one site, including old and newly cultivated 

sites. 
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Table (1). Descriptive statistics of the examined soil properties. 

Statistical parameter 
CaCO3 CEC Clay ECe 

% cmol(+)/kg % dS/m 

Mean 5.82 9.22 16.79 4.82 

Standard Error 0.55 0.62 0.86 0.44 

Standard Deviation 6.48 7.34 10.23 5.22 

Sample Variance 41.98 53.85 104.66 27.22 

Range 33.84 30.94 53.17 29.86 

Minimum 0.76 1.44 1.59 0.38 

Maximum 34.60 32.38 54.76 30.24 

 

There are considerable evidences to 

support the findings of current work such as the 

study conducted by Ibrahim et al. (2021) who 

found that the CaCO3 content in the old 

cultivated soils of Sohag Governorate ranged 

between 0.31 and 10.30%. Additional support 

came from Moursy and Thabit (2022) who 

found that the CaCO3 content in some desert 

soils of Sohag Governorate varied from 4.96 to 

11.05%. Likewise, Mustafa (2023) observed that 

the CaCO3content in the soils of Sohag 

Governorate ranged between 0.53 and 38.12%. 

Regarding to the CEC content in the soils of 

Sohag Governorate, many studies were 

conducted (i.e., Mustafa and Moursy, 2020; 

Ibrahim et al., 2021; Mustafa et al., 2024; 

Mustafa, 2023 and Shokr et al., 2024; and 

others). The previous studies revealed that the 

old cultivated soils had the highest values of 

CEC while the lowest were observed in the 

desert areas; and the moderate CEC content was 

recorded for the newly reclaimed soils. For 

instance, Mustafa (2023) found that the CEC 

content in the soils of Sohag Governorate varied 

from 1.73 to 18.05 cmol(+)/kg. Similarity, 

Mustafa et al., (2024) observed that the CEC 

content in the soils of Sohag Governorate ranged 

from 17.91 to 30.35 cmol(+)/kg. These findings 

are almost consistent with our laboratory 

observations of the wet chemistry testing. The 

clay content of the study area varied according 

to the land use and management practices. 

Accordingly, Ibrahim et al., (2021) found 

through laboratory analysis that the percentage 

of clay content in various soils of Sohag 

Governorate ranged between 1.04 and 60.80%. 

Similarly, Mustafa (2023) mentioned that clay 

varied from 2 to 48.95% in some of Sohag soils. 

Mustafa (2023) found that ECe values differed 

between 0.26 and 20.41 dS/m in some soils of 

Sohag; while Negim and Moursy (2023) 

ovserved that the ECe in various soils collected 

from three separate sites in Sohag Governorate 

ranged between 1.07 and 3.69 dS/m. Moreover, 

Mustafa and Moursy (2020) found that ECe 

varied from 0.26to 3.65 dS/m; while Moursy and 

Thabit (2022) found that the ECe ranged 

between 1.16 and 7.00 dS/m in some soils 

collected from Sohag. However, these results are 

in consistent with our laboratory analysis of the 

soil samples under study in Sohag Governorate. 

Correlation between soil properties 

The figure (4) presents a correlation 

matrix for the soil properties. The most notable 

positive correlation is between CaCO₃ and CEC 

(r = 0.52), suggesting that soils with higher 

calcium carbonate content tend to have higher 

cation exchange capacity. This relationship may 

be due to the influence of CaCO₃ on soil 

structure and its contribution to the overall 

cation exchange sites in calcareous soils. In 

contrast, CaCO₃ shows moderate negative 

correlations with both clay content (r = -0.25) 

and EC (r = -0.30). This indicates that as 

calcium carbonate increases, there is a tendency 

for clay content and soil salinity (as measured by 

EC) to decrease, which could be related to the 

dilution effect of CaCO₃ in sandy or less clay-

rich soils, or to the leaching of salts in 

calcareous environments. CEC has weak 

negative correlations with both clay content (r = 

-0.18) and EC (r = -0.20), which is somewhat 

unexpected since clay minerals typically 

contribute to higher cation exchange capacity. 

This weak relationship may reflect the 

dominance of other soil factors, such as organic 

matter or mineralogy, or the influence of land 
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management and reclamation practices in the 

sampled area. The only moderate positive 

correlation among the remaining pairs is 

between clay content and EC (r = 0.34), 

suggesting that soils with higher clay content 

tend to have higher electrical conductivity, 

possibly due to greater retention of salts and 

moisture in finer-textured soils. 

 
Figure (4). Correlation matrix of the soil 

properties.  

Soil spectral data 

It is very important to understand the 

spectral signature behavior of soil to determine 

the interaction between spectra, reflectance, and 

different soil parameters. It is evident that there 

is variation in reflectance values among soil 

samples. This variation is due to the variation in 

color, chemical structure, texture, consistency, 

compaction, SOM content, mineral composition, 

iron oxides, and other internal factors. However, 

there are sharp peaks observed at wavelengths of 

1400, 1900, and 2200 nm due to strong spectral 

absorption of O-H hydroxyl functional groups 

(Chauhan et al., 2021). Vis-NIR spectral data 

typically exhibits specific absorption and 

reflectance patterns that are indicative of 

material composition, allowing for the 

identification of key characteristics such as 

moisture content, SOM, nutrient levels, and 

other relevant parameters (Bai et al., 2022). The 

spectral behavior of soil CaCO₃ (figure 5a) 

shows that as CaCO₃ content increases, soil 

reflectance also rises, with samples high in 

CaCO₃ exhibiting the greatest reflectivity. This 

is consistent with the principle that lighter-

colored materials reflect more light than darker 

ones (Ben-Dor et al., 1999). Previous studies, 

including Lagacherie et al. (2008), Mitran et al. 

(2021), Qi et al. (2021), Shahabi et al. (2023), 

and Shokr et al. (2024), confirm that soils with 

higher CaCO₃ content display higher reflectance 

and lower absorption. For CEC (figure 5b), the 

spectral data reveal that soils with lower CEC 

have higher reflectance, while those with higher 

CEC show reduced reflectivity. This pattern is 

attributed to the increased nutrient retention in 

soils with higher CEC, which affects their 

optical properties and results in darker 

appearance and greater absorption (Ben-Dor et 

al., 1999; Milos et al., 2022). Similar findings by 

Mustafa et al. (2024) and Shokr et al. (2024) 

demonstrate that increasing CEC leads to 

decreased reflectance and increased absorption. 

Regarding clay content (figure 5c), the spectra 

indicate that as clay percentage increases, 

reflectance decreases and absorption increases. 

Soils with the highest clay content have the 

lowest reflectivity, while those with the least 

clay have the highest reflectivity, again 

reflecting the general principle that darker, finer-

textured soils absorb more light (Ben-Dor et al., 

1999). This trend is supported by studies from 

Wang et al. (2021), Mitran et al. (2021), and 

Bellinaso et al. (2021), all of which report that 

higher clay content results in reduced soil 

reflectance. For ECe (figure 5d), the spectral 

data show that higher soil salinity is associated 

with increased reflectance and decreased 

absorption. This relationship, observed in Figure 

18, is consistent with the findings of Nawar et al. 

(2015), Medhat et al. (2021), Abdellatif et al. 

(2021), and Wang et al. (2023), who also found 

that as soil ECe increases, reflectivity rises and 

absorption diminishes, in line with established 

theories of light reflection in soils. 

Correlograms of the different soil properties  

(a) Calcium Carbonate (CaCO₃) 
The correlogram (Figure 6a) shows the 

correlation between spectral reflectance and 

CaCO₃ content across the soil samples. The plot 

https://jsasj.journals.ekb.eg/


Journal of Sohag Agriscience (JSAS)                                                                        https://jsasj.journals.ekb.eg 

 

 
reveals a strong negative correlation particularly 

in the 2200–2350 nm range, with correlation 

coefficients dropping below –0.60 in some 

bands. This wavelength region is well-known for 

featuring carbonate absorption bands, especially 

due to the combination and overtone vibrations 

of CO₃ groups. The negative correlation implies 

that higher CaCO₃ content is associated with 

lower reflectance (darker pixels) in those 

spectral regions, possibly due to enhanced 

absorption by carbonate minerals. A secondary 

region of interest is between 1900–2000 nm, 

where moderate correlations are also visible, 

potentially related to overlapping water bands or 

indirect effects of carbonate on soil moisture 

retention.  

(b) Cation Exchange Capacity (CEC) 

Correlogram (Figure 6b) reflects the 

relationship between spectral data and CEC 

values. The observed correlations are positive, 

with maximum peaks in the 2100–2250 nm 

range, reaching values close to +0.60. These 

wavelengths are typically influenced by clay 

minerals, especially smectites and illites, which 

strongly contribute to CEC. A positive 

correlation in this region suggests that soils with 

higher reflectance (i.e., lighter tone) correspond 

to higher CEC values, possibly because high 

CEC clays like smectites also reflect more light 

in those wavelengths. This association is often 

strengthened by the presence of OH and Al–OH 

combinations, which dominate absorption in this 

part of the SWIR region. 

(c) Clay Content 

In correlogram (Figure 6c), clay content 

exhibits strong positive correlations, again 

primarily within the 2100–2300 nm range, with 

values peaking beyond +0.70. These 

wavelengths are consistent with the diagnostic 

absorption features of clay minerals due to Al–

OH and Mg–OH bonds. Lesser, but still 

relevant, correlations may also appear around 

1400 and 1900 nm, indicating moisture-related 

absorption possibly influenced by clay’s water-

holding capacity. The positive nature of the 

correlation implies that higher clay content leads 

to increased reflectance in these regions, likely 

due to internal scattering from fine-textured 

surfaces. The magnitude and specificity of the 

correlations reflect the strong and consistent 

spectral expression of clay minerals. 

(d) Electrical Conductivity (EC) 

Correlogram (Figure 6d) illustrates the 

relationship between EC and spectral 

reflectance. The correlation trend here is 

somewhat more complex and moderate, but 

noticeable positive correlations emerge around 

1450 nm, 1950 nm, and weakly near 2200–2300 

nm, though with lower strength (approximately 

+0.40 to +0.50). These regions align with 

moisture and salt-associated features, suggesting 

indirect detection of salinity. Salinity affects 

reflectance indirectly by altering moisture 

retention and causing salt crust formation, which 

can brighten or darken soil surfaces depending 

on the salt types. The positive correlations 

suggest higher EC values are associated with 

higher reflectance, potentially due to salt 

accumulation on the soil surface increasing 

brightness. 

General insights and applications 

The consistent presence of significant 

correlations in the SWIR region (1900–2350 

nm) across all four properties highlights its 

critical role in soil property estimation. These 

findings reinforce the importance of selecting 

appropriate wavelength bands for model 

calibration, especially in soil spectral libraries 

and digital soil mapping applications. Moreover, 

the ability to detect multiple properties using 

overlapping spectral regions supports the 

feasibility of multi-target predictive modeling, 

improving the efficiency of soil monitoring 

programs. These correlograms also validate the 

quality of the collected spectral data, showing 

that the reflectance measurements capture real 

and interpretable signals linked to soil 

composition. In a broader sense, such spectral–

property relationships pave the way for non-

destructive, rapid, and cost-effective soil 

analysis methods, which are essential for 

sustainable land management, precision 

agriculture, and large-scale soil surveys. 
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(c) (d) 

Figure (5). Spectral signatures’ behaviors of the soil properties: (a) CaCO3; (b) CEC; (c) Clay; and (d) EC. 

 

  

(a) (b) 

  
(c) (d) 

Figure (6). Correlograms of different soil properties against the spectral data; (a) CaCO3; (b) CEC; (c) 

Clay; and (d) EC. 
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Comparison between the two approaches 

used for soil characterization  

The comparison between conventional 

laboratory methods and vis-NIR spectral 

techniques for soil characterization in the Sohag 

Governorate revealed notable distinctions in 

terms of accuracy, efficiency, and practicality. 

Traditional wet-chemistry methods involved 

precise but labor-intensive procedures, including 

volumetric determination of CaCO₃, 
hydrometer-based particle size analysis for clay, 

and titration for CEC. These methods provided 

highly accurate and validated data for the 140 

collected samples, offering a detailed 

understanding of soil properties such as CaCO₃ 
(0.76–34.60%, mean 5.82%), CEC (1.44–32.38 

cmol(+)/kg, mean 9.22), clay (1.59–54.76%, 

mean 16.79%), and EC (0.38–30.24 dS/m, mean 

4.82). However, these analyses required 

extensive sample handling, chemical reagents, 

and processing time, making them less suitable 

for rapid or large-scale soil assessments. In 

contrast, the spectral method demonstrated 

substantial advantages in terms of speed, cost-

effectiveness, and environmental sustainability. 

By acquiring vis-NIR reflectance data in the 

350–2500 nm range, the study identified specific 

spectral regions that strongly correlated with key 

soil properties, such as 2200–2350 nm for 

CaCO₃ (r < –0.60), 2100–2300 nm for clay (r > 

+0.70), and 2100–2250 nm for CEC (r ≈ +0.60). 

This method enabled rapid, non-destructive 

assessment of multiple soil parameters 

simultaneously and proved particularly useful in 

capturing the compositional diversity across old 

and newly reclaimed lands. However, its 

effectiveness relies heavily on robust calibration 

with reference laboratory data. Overall, while 

conventional methods remain essential for 

accurate baseline measurements and model 

development, vis-NIR spectroscopy offers a 

scalable and efficient alternative for ongoing soil 

monitoring and mapping across large areas. 

 

CONCLUSION 

The present study successfully 

characterized the spatial variability of key soil 

properties in Sohag Governorate, Egypt, using 

both conventional laboratory methods and 

visible to near-infrared (vis-NIR) spectroscopy. 

Laboratory analysis of 140 surface soil samples 

revealed wide ranges in soil attributes: calcium 

carbonate (CaCO₃) content varied from 0.76% 

to 34.60%, cation exchange capacity (CEC) 

ranged from 1.44 to 32.38 cmol(+)/kg, clay 

content spanned 1.59% to 54.76%, and electrical 

conductivity (ECe) extended from 0.38 to 30.24 

dS/m. High variances, particularly in clay 

(104.66) and CEC (53.85), highlighted the 

impact of diverse land uses and reclamation 

stages. Vis-NIR spectral data (350–2500 nm) 

provided valuable insight into the spectral 

behavior of these soil properties. Strong negative 

correlations between CaCO₃ and reflectance 

were observed in the 2200–2350 nm region (r < 

–0.60), while CEC and clay content showed 

strong positive correlations (r > +0.60 and 

+0.70, respectively) in the 2100–2300 nm 

region. EC exhibited moderate positive 

correlations (r ≈ +0.40 to +0.50) near 1450, 

1950, and 2200 nm. These findings confirm that 

reflectance data, particularly in the shortwave 

infrared range, can serve as reliable proxies for 

estimating various soil properties, provided 

proper calibration against laboratory values. 

Based on these results, the study recommends 

adopting a hybrid approach that integrates vis-

NIR spectral techniques with traditional wet-

chemistry methods. While laboratory testing 

remains essential for calibration and validation, 

spectral data significantly reduce time, cost, and 

environmental impact when applied at scale. 

This integrated methodology is especially useful 

for soil surveys, digital soil mapping, and 

precision agriculture initiatives in arid and semi-

arid regions like Sohag. For future work, it is 

recommended to develop and validate predictive 

models (e.g., PLSR or machine learning 

approaches) using the identified sensitive 

spectral bands. Additionally, extending the study 

to include organic matter, micronutrients, and 

soil moisture would broaden its applicability. 

Incorporating geostatistical and remote sensing 

tools, such as satellite hyperspectral imagery, 

could further enhance the spatial resolution and 

scalability of soil property mapping. Ultimately, 

this work contributes to building robust soil 

spectral libraries and supports sustainable land 

and crop management strategies. 
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